Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Edge Computing Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Federated Learning
(section)
Page
Discussion
British English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Upload file
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== 5.2.2 Decentralized Architecture === Decentralized FL removes the need for a central server altogether. Instead, client devices interact directly with each other to share and aggregate model updates. These peer-to-peer (P2P) networks may operate using structured overlays, such as ring topologies or blockchain systems, or employ gossip-based protocols for stochastic update dissemination. In some implementations, clients collaboratively compute weighted averages or perform federated consensus to update the global model in a distributed fashion. This architecture significantly enhances system robustness, resilience, and trust decentralization. There is no single point of failure, and the absence of a central coordinator eliminates risks of aggregator bias or compromise. Moreover, decentralized FL supports federated learning in contexts where participants belong to different organizations or jurisdictions and cannot rely on a neutral third party. However, these benefits come at the cost of increased communication overhead, complex synchronization requirements, and difficulties in managing convergence—especially under non-identical data distributions and asynchronous updates. Protocols for secure communication, update verification, and identity authentication are necessary to prevent malicious behavior and ensure model integrity. Due to these complexities, decentralized FL is an active area of research and is best suited for scenarios requiring strong autonomy and fault tolerance.<sup>[2]</sup>
Summary:
Please note that all contributions to Edge Computing Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Edge Computing Wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)