Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Edge Computing Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Machine Learning at the Edge
(section)
Page
Discussion
British English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Upload file
Special pages
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==='''The Need for Model Optimization at the Edge'''=== Given the constrained resources and the inherently dynamic environments in which edge devices must operate, model optimization is a crucial part of machine learning in edge computing. The current most widely used methodology consists of simply specifying an exceptionally large set of parameters, and giving it to the model to train on. This can be feasible when hardware is very advanced and powerful, and is necessary for systems such as Large Language Models (LLMs). However, this is no longer viable when dealing with the devices and environments at the edge. It is crucial to identify the best parameters and training methodology so as to minimize the amount of work done by these devices, while compromising as little as possible on the accuracy of the models. There are multiple ways to this, and they include either optimization or augmentation of the dataset itself, or optimization of the partition of work among the edge devices.
Summary:
Please note that all contributions to Edge Computing Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Edge Computing Wiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)